Exercise 4

Use residues to evaluate the improper integrals in Exercises 1 through 8.

$$
\begin{gathered}
\int_{0}^{\infty} \frac{x \sin 2 x}{x^{2}+3} d x \\
\text { Ans. } \frac{\pi}{2} \exp (-2 \sqrt{3}) .
\end{gathered}
$$

Solution

The integrand is an even function of x, so the interval of integration can be extended to $(-\infty, \infty)$ as long as the integral is divided by 2 .

$$
\int_{0}^{\infty} \frac{x \sin 2 x}{x^{2}+3} d x=\int_{-\infty}^{\infty} \frac{x \sin 2 x}{2\left(x^{2}+3\right)} d x
$$

In order to evaluate the integral, consider the corresponding function in the complex plane,

$$
f(z)=\frac{z e^{2 i z}}{2\left(z^{2}+3\right)},
$$

and the contour in Fig. 93. Singularities occur where the denominator is equal to zero.

$$
\begin{gathered}
2\left(z^{2}+3\right)=0 \\
z^{2}+3=0 \\
z= \pm i \sqrt{3}
\end{gathered}
$$

The singular point of interest to us is the one that lies within the closed contour, $z=i \sqrt{3}$.

Figure 1: This is Fig. 93 with the singularity at $z=i \sqrt{3}$ marked.
According to Cauchy's residue theorem, the integral of $z e^{2 i z} /\left[2\left(z^{2}+3\right)\right]$ around the closed contour is equal to $2 \pi i$ times the sum of the residues at the enclosed singularities.

$$
\oint_{C} \frac{z e^{2 i z}}{2\left(z^{2}+3\right)} d z=2 \pi i \operatorname{Res}_{z=i \sqrt{3}} \frac{z e^{2 i z}}{2\left(z^{2}+3\right)}
$$

This closed loop integral is the sum of two integrals, one over each arc in the loop.

$$
\int_{L} \frac{z e^{2 i z}}{2\left(z^{2}+3\right)} d z+\int_{C_{R}} \frac{z e^{2 i z}}{2\left(z^{2}+3\right)} d z=2 \pi i \operatorname{Res}_{z=i \sqrt{3}} \frac{z e^{2 i z}}{2\left(z^{2}+3\right)}
$$

The parameterizations for the arcs are as follows.

$$
\begin{array}{rll}
L: & z=r, & r=-R \quad \rightarrow \quad r=R \\
C_{R}: & z=R e^{i \theta}, & \theta=0 \quad \rightarrow \quad \theta=\pi
\end{array}
$$

As a result,

$$
\int_{-R}^{R} \frac{r e^{2 i r}}{2\left(r^{2}+3\right)} d r+\int_{C_{R}} \frac{z e^{2 i z}}{2\left(z^{2}+3\right)} d z=2 \pi i \operatorname{Res}_{z=i \sqrt{3}} \frac{z e^{2 i z}}{2\left(z^{2}+3\right)}
$$

Take the limit now as $R \rightarrow \infty$. The integral over C_{R} consequently tends to zero. Proof for this statement will be given at the end.

$$
\int_{-\infty}^{\infty} \frac{r e^{2 i r}}{2\left(r^{2}+3\right)} d r=2 \pi i \underset{z=i \sqrt{3}}{\operatorname{Res}} \frac{z e^{2 i z}}{2\left(z^{2}+3\right)}
$$

The denominator can be written as $2\left(z^{2}+3\right)=2(z+i \sqrt{3})(z-i \sqrt{3})$. From this we see that the multiplicity of the $z-i \sqrt{3}$ factor is 1 . The residue at $z=i \sqrt{3}$ can then be calculated by

$$
\operatorname{Res}_{z=i \sqrt{3}} \frac{z e^{2 i z}}{2\left(z^{2}+3\right)}=\phi(i \sqrt{3}),
$$

where $\phi(z)$ is equal to $f(z)$ without the $z-i \sqrt{3}$ factor.

$$
\phi(z)=\frac{z e^{2 i z}}{2(z+i \sqrt{3})} \Rightarrow \phi(i \sqrt{3})=\frac{i \sqrt{3} e^{2 i^{2} \sqrt{3}}}{2(2 i \sqrt{3})}=\frac{e^{-2 \sqrt{3}}}{4}
$$

So then

$$
\operatorname{Res}_{z=i \sqrt{3}} \frac{z e^{2 i z}}{2\left(z^{2}+3\right)}=\frac{\exp (-2 \sqrt{3})}{4}
$$

and

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{r e^{2 i r}}{2\left(r^{2}+3\right)} d r & =2 \pi i\left[\frac{\exp (-2 \sqrt{3})}{4}\right] \\
\int_{-\infty}^{\infty} \frac{r \cos 2 r+i r \sin 2 r}{2\left(r^{2}+3\right)} d r & =\frac{i \pi}{2} \exp (-2 \sqrt{3}) \\
\int_{-\infty}^{\infty} \frac{r \cos 2 r}{2\left(r^{2}+3\right)} d r+i \int_{-\infty}^{\infty} \frac{r \sin 2 r}{2\left(r^{2}+3\right)} d r & =\frac{i \pi}{2} \exp (-2 \sqrt{3})
\end{aligned}
$$

Match the real and imaginary parts of both sides.

$$
\int_{-\infty}^{\infty} \frac{r \cos 2 r}{2\left(r^{2}+3\right)} d r=0 \quad \text { and } \quad \int_{-\infty}^{\infty} \frac{r \sin 2 r}{2\left(r^{2}+3\right)} d r=\frac{\pi}{2} \exp (-2 \sqrt{3})
$$

Therefore, changing the dummy integration variable to x,

$$
\int_{0}^{\infty} \frac{x \sin 2 x}{x^{2}+3} d x=\frac{\pi}{2} \exp (-2 \sqrt{3})
$$

The Integral Over C_{R}

Our aim here is to show that the integral over C_{R} tends to zero in the limit as $R \rightarrow \infty$. The parameterization of the semicircular arc in Fig. 93 is $z=R e^{i \theta}$, where θ goes from 0 to π.

$$
\begin{aligned}
\int_{C_{R}} \frac{z e^{2 i z}}{2\left(z^{2}+3\right)} d z & =\int_{0}^{\pi} \frac{R e^{i \theta} e^{2 i R e^{i \theta}}}{2\left[\left(R e^{i \theta}\right)^{2}+3\right]}\left(R^{i \theta} d \theta\right) \\
& =\int_{0}^{\pi} \frac{e^{2 i R(\cos \theta+i \sin \theta)}}{R^{2} e^{i 2 \theta}+3}\left(\frac{R^{2} i e^{i 2 \theta}}{2} d \theta\right) \\
& =\int_{0}^{\pi} \frac{e^{2 i R \cos \theta} e^{-2 R \sin \theta}}{R^{2} e^{i 2 \theta}+3}\left(\frac{R^{2} i e^{i 2 \theta}}{2} d \theta\right)
\end{aligned}
$$

Now consider the integral's magnitude.

$$
\begin{aligned}
&\left|\int_{C_{R}} \frac{z e^{2 i z}}{2\left(z^{2}+3\right)} d z\right|=\left|\int_{0}^{\pi} \frac{e^{2 i R \cos \theta} e^{-2 R \sin \theta}}{R^{2} e^{i 2 \theta}+3}\left(\frac{R^{2} i e^{i 2 \theta}}{2} d \theta\right)\right| \\
& \leq \int_{0}^{\pi}\left|\frac{e^{2 i R \cos \theta} e^{-2 R \sin \theta}}{R^{2} e^{i 2 \theta}+3}\left(\frac{R^{2} i e^{i 2 \theta}}{2}\right)\right| d \theta \\
&=\int_{0}^{\pi} \frac{\left|e^{2 i R \cos \theta \mid}\right| e^{-2 R \sin \theta \mid} \mid}{\left|R^{2} e^{i 2 \theta}+3\right|}\left|\frac{R^{2} i e^{i 2 \theta}}{2}\right| d \theta \\
&=\int_{0}^{\pi} \frac{e^{-2 R \sin \theta} \frac{R^{2}}{\left|R^{2} e^{i 2 \theta}+3\right|} d \theta}{2} d \theta \\
& \leq \int_{0}^{\pi} \frac{e^{-2 R \sin \theta}}{\left|R^{2} e^{i 2 \theta}\right|-|3|} \frac{R^{2}}{2} d \theta \\
&=\int_{0}^{\pi} \frac{e^{-2 R \sin \theta}}{R^{2}-3} \frac{R^{2}}{2} d \theta \\
&=\int_{0}^{\pi} \frac{e^{-2 R \sin \theta}}{1-\frac{3}{R^{2}}} \frac{d \theta}{2}
\end{aligned}
$$

Now take the limit of both sides as $R \rightarrow \infty$.

$$
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{z e^{2 i z}}{2\left(z^{2}+3\right)} d z\right| \leq \lim _{R \rightarrow \infty} \int_{0}^{\pi} \frac{e^{-2 R \sin \theta}}{1-\frac{3}{R^{2}}} \frac{d \theta}{2}
$$

Because the limits of integration do not depend on R, the limit may be brought inside the integral.

$$
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{z e^{2 i z}}{2\left(z^{2}+3\right)} d z\right| \leq \int_{0}^{\pi} \lim _{R \rightarrow \infty} \frac{e^{-2 R \sin \theta}}{1-\frac{3}{R^{2}}} \frac{d \theta}{2}
$$

Since θ lies between 0 and π, the sine of θ is positive. Thus, the exponent of e tends to $-\infty$, and the integral tends to zero.

$$
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{z e^{2 i z}}{2\left(z^{2}+3\right)} d z\right| \leq 0
$$

The magnitude of a number cannot be negative, and the only number that has a magnitude of zero is zero. Therefore,

$$
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{z e^{2 i z}}{2\left(z^{2}+3\right)} d z\right|=0 \quad \rightarrow \quad \lim _{R \rightarrow \infty} \int_{C_{R}} \frac{z e^{2 i z}}{2\left(z^{2}+3\right)} d z=0 .
$$

